
PGUNITTEST PROJECT
HELP

pgUnitTest
Help

pgUnitTest P. 1 / 24 Date: August 2007

PGUNITTEST PROJECT
HELP

TABLE OF CONTENTS
Overview..4
Example of use... 5

Example database.. 5
Create the database... 6
Run unit tests... 6
Insert the trainees.. 6
Check some results... 7
More tests... 9

Scripting language... 10
Rollback option.. 10
Test name option.. 11
Check the result unit test... 11
Check the number of rows unit test... 11
Check the execution time unit test... 12
Check the results (records) unit test.. 13
Insert unit test... 13

Random data generators... 15
How to use the generators.. 15
Common parameters... 15
Number generators.. 15
Date generators.. 16
String generators... 17
Text generators.. 18

pgUnitTest P. 2 / 24 Date: August 2007

PGUNITTEST PROJECT
HELP

Dictionary generators.. 18
Internal generators... 18
Reference generators... 19
Summary... 19

Export formats.. 21
Command line parameters.. 22

Run pgUnitTest... 22
Run unit tests... 22
Make a difference... 22

Frequently asked questions.. 24
Are the unique values really unique?... 24
I am trying to use the unique values for a real or a double and they seem
to repeat!... 24
Why is there no possibility to generate unique random strings?............24

pgUnitTest P. 3 / 24 Date: August 2007

PGUNITTEST PROJECT
HELP

Overview

pgUnitTest P. 4 / 24 Date: August 2007

PGUNITTEST PROJECT
HELP

Example of use

With pgUnitTest you can run unit tests on database queries. There are two types of unit tests:

● insert unit tests meant to insert data or randomly generated data,

● select unit tests to check queries, execution time...

We consider that the PostgreSQL database is on localhost, the user name is postgres, and the
password is postgres too.

Example database

pgUnitTest P. 5 / 24 Date: August 2007

PGUNITTEST PROJECT
HELP

Create the database

The table structure is in the help folder of pgUnitTest: help/example/training.sql.

On the command line use psql:

psql -U postgres

Create the database:

CREATE DATABASE training;

Exit from the interactive terminal:

\q

Import the data from training.sql to create the tables:

psql -U postgres -d training -f help/example/training.sql

The tables should be ready for the following tests.

Run unit tests

The unit tests can be provided with a script file or with a XML file. Let's see how we can test our
trainees table in the training database:

● Insert 10,000 trainees with randomly generated data,

● Check the percentage of null telephone numbers,

● Check that the skill level is included in the expected range,

● Check if two trainees have the same identity (first name and last name),

● Check if the telephone and the email of the first two trainees are the ones expected.

In order to do that it is advised to, first insert the 10,000 trainees, and then check the results.

Insert the trainees

Put in a text file (data.pgu):

pgUnitTest P. 6 / 24 Date: August 2007

PGUNITTEST PROJECT
HELP

ROLLBACK { FALSE }

UNITTEST ('Insert trainees') {
 EXECUTE
 FOR 1 TO 10000 {
 INSERT INTO trainees
 (firstname, lastname, birthdate, address, telephone,
 email, skilllevel)
 VALUES (
 -- id_trainee serial NOT NULL => automatic
 -- firstname character varying(255) NOT NULL
 '%{name(0)}%',
 -- lastname character varying(255) NOT NULL
 '%{name(0)}%',
 -- birthdate date NOT NULL
 '%{date(1970-01-01, 1980-01-01, 0)}%',
 -- address text NOT NULL
 '%{address(0)}%',
 -- telephone character varying(255) => 20% of null values
 '%{string("[0-9]{10}", 20, 12345)}%',
 -- email character varying(255) => 20% of null values
 '%{string("[a-z0-9]{6,12}@[a-z]{6,12}.com", 20)}%',
 -- skilllevel smallint NOT NULL between 0 and 8
 '%{smallint(0, 8, 0)}%'
);
 }
 WITH
 TEST_INSERT;
}

We consider that data.pgu is in the pgUnitTest directory.

Run the test (the insert) with the following command line, in the pgUnitTest directory:

java -jar pgUnitTest.jar -s data.pgu -f html -o data.html -b
"//localhost/training/postgres/postgres"
This test should succeed, as you can see in data.html (the output file in HTML format).

Check some results

Put this in a text file (test.pgu):

ROLLBACK { FALSE }

UNITTEST ('Percentage of null values for telephone column') {

pgUnitTest P. 7 / 24 Date: August 2007

PGUNITTEST PROJECT
HELP

 EXECUTE
 SELECT (count(*) * 100 / 10000) as mean
 FROM trainees
 WHERE telephone IS NULL;
 WITH
 TEST_RESULT;
 CHECK
 20;
}

UNITTEST ('Skill level in range') {
 EXECUTE
 SELECT skilllevel
 FROM trainees
 WHERE skilllevel < 0 OR skilllevel > 8;
 WITH
 TEST_ROWSCOUNT;
 CHECK
 0;
}

UNITTEST ('Two trainees with the same identity (firstname, lastname)') {
 EXECUTE
 SELECT * FROM (
 SELECT firstname, lastname, count(*) AS cnt
 FROM trainees
 GROUP BY firstname, lastname
 HAVING count(*) >= 2
) c;
 WITH
 TEST_ROWSCOUNT;
 CHECK
 0;
}

UNITTEST ('Complex record: the test fails') {
 EXECUTE
 SELECT telephone, email FROM trainees WHERE id_trainee <= 3;
 WITH
 TEST_RESULTS;
 CHECK
 telephone, email
 ('8732346179', NULL)
 ('7436831518', 'futxzs@cefcqgar.com');
}

Run the tests (the select) with the following command line, in the pgUnitTest directory:

pgUnitTest P. 8 / 24 Date: August 2007

PGUNITTEST PROJECT
HELP

java -jar pgUnitTest.jar -s test.pgu -f html -o test.html -b
"//localhost/training/postgres/postgres"
You can see the report in test.html (the output file in HTML format). The first two tests should
succeed but not the last two ones.

More tests

A data.pgu and a test.pgu files are bundled with pgUnitTest in the help/example directory.
These tests are meant to be run on the complete training database. But, first you need to recreate
the database in order not to have any data in it.

pgUnitTest P. 9 / 24 Date: August 2007

PGUNITTEST PROJECT
HELP

Scripting language

There are five types of tests, as shown on the diagram in the overview. The tests are performed on
database queries. To run tests pgUnitTest uses a scripting language.

The scripting language is case-insensitive. The pgu extension is advised. To edit a script you can
use any text editor. SQL syntax highlighting is good as the major parts of keywords are SQL ones.

Like in SQL, -- can be used to comment a line.

The structure of a pgu file is this one:

ROLLBACK { TRUE|FALSE }

UNITTEST [('Name of the test')] {
EXECUTE

INSERT OR SELECT STATEMENT;
WITH

TEST TYPE;
[CHECK

RESULT EXPECTED;]
} *

Where * means that you can put as many tests as you want.

For each type of test:

● The expected result is in the check section,

● The test type is in the with section,

● The query is in the execute section,

Each section ends with a semicolon ;.

Rollback option

When preparing the tests it is useful not to insert the data. You can set the rollback option, at the
beginning of the file to true. Then, every insert operation will be canceled and no data will be
inserted.

This option is required.

pgUnitTest P. 10 / 24 Date: August 2007

PGUNITTEST PROJECT
HELP

To really insert data, this option must be set to false.

Test name option

The name of the test is between quotes. It is optional.

Check the result unit test

UNITTEST ('This test checks a result') {
EXECUTE
 SELECT a FROM example WHERE a = "qwerty";
WITH
 TEST_RESULT;
CHECK
 'qwerty';

}

This test checks whether a query returns an expected result or not.

There can be a modifier after the check in order to be case-insensitive:

UNITTEST ('This test checks a result') {
EXECUTE
 SELECT a FROM example WHERE a = "qwerty";
WITH
 TEST_RESULT;
CHECK -i
 'Qwerty';

}

The expected result can be:

● An integer number,

● A floating number,

● A string between quotes (use '' or \' to escape quotes).

The expected string are trimmed: ' qwerty ' is equal to 'querty'.

Check the number of rows unit test

UNITTEST {

pgUnitTest P. 11 / 24 Date: August 2007

PGUNITTEST PROJECT
HELP

EXECUTE
 SELECT * FROM example;
WITH
 TEST_ROWSCOUNT;
CHECK
 10;

}

This test checks whether the query returns a specific number of rows results or not. The expected
number of rows must be an integer.

There can be one modifier after the check:

● -g means the number specified is greater than the expected number of rows,

● -l means the opposite.

UNITTEST {
EXECUTE
 SELECT * FROM example;
WITH
 TEST_ROWSCOUNT;
CHECK -l
 10;

}

This test checks whether the query returns more than 10 results or not.

Check the execution time unit test

UNITTEST {
EXECUTE
 SELECT * FROM example;
WITH
 TEST_EXECTIME;
CHECK
 100;

}

This test checks the execution time of a query. This time in milliseconds must be lower or equal to the
expected one. The expected time must be an integer and it represents a time in milliseconds.

There is no modifier for this test.

pgUnitTest P. 12 / 24 Date: August 2007

PGUNITTEST PROJECT
HELP

Check the results (records) unit test

This test is similar to another one but deals with complex results (records).

UNITTEST {
EXECUTE
 SELECT * FROM example;
WITH
 TEST_RESULTS;
CHECK
 a, b, c
 (1, 'qwerty', 'US')
 (2, 'azerty', 'FR');

}

In the test above we get each row and each column from the example table. We provide the name of
the columns we want to check: a, b, c. Then we provide each expected row. In this example there
are two rows. It means:

● For the first row a must be equal to 1, b must be equal to qwerty, c must be equal to US,

● For the second row a must be equal to 2, b must be equal to azerty, c must be equal to FR.

There are three possible modifiers:

● -i means that the comparison is case-insensitive (see Check the result unit test section),

● -l means that the expected rows are included in all the rows returned by the query,

● -g means the opposite.

For a null value put NULL. Use '' or \' to escape quotes in strings.

Insert unit test

This test is special. There is no check section (no expected result except that the query must be
successful and the data inserted).

An insert unit test can use a single insert statement or use a for statement to insert a lot of data.

UNITTEST {
EXECUTE
 INSERT INTO example VALUES('1234');
WITH

pgUnitTest P. 13 / 24 Date: August 2007

PGUNITTEST PROJECT
HELP

 TEST_INSERT;
}

The test above does a simple insert into the table example.

UNITTEST {
EXECUTE
 FOR 1 TO 1000 {
 INSERT INTO example VALUES('%{string(10,20,5)}%');
 }
WITH
 TEST_INSERT;

}

The test above does a complex insert. It loops 1,000 times to insert a randomly generated string
into the table example.

Go the random data generators section to learn more about the random data generators.

pgUnitTest P. 14 / 24 Date: August 2007

PGUNITTEST PROJECT
HELP

Random data generators

How to use the generators

The way to use the generators is to put something like this in the insert statement for the concerned
element (the one that has to be filled up with random data):

'%{integer(10,20,5)}%'

It starts with '%{ then it continues with the generator name, the parameters between parenthesis and
the sequence }%' to finish (see example in the insert unit test section).

Common parameters

unique is true or false and means whether each value in the provided range must be generated
once or not.

seed is a long number used to initialize a random generator. Specifying a seed means that every time
this random generator will be called it will generate the same sequence of data.

null means the percentage of null values that have to be generated, between 0 and 100.

All min and max parameters are inclusive.

Number generators

short(min, max, null, seed, unique)
short(min, max, null, unique)
short(min, max, null)
integer(min, max, null, seed, unique)
integer(min, max, null, unique)
integer(min, max, null)
bigint(min, max, null, seed, unique)
bigint(min, max, null, unique)
bigint(min, max, null)
real(min, max, null, seed, unique)
real(min, max, null, unique)
real(min, max, null)

pgUnitTest P. 15 / 24 Date: August 2007

PGUNITTEST PROJECT
HELP

double(min, max, null, seed, unique)
double(min, max, null, unique)
double(min, max, null)

You must specify at least:

● The minimum of the range;

● The maximum of the range;

● The percentage of null values;

The other parameters are optional.

serial(start)
serial()

A serial generator is a generator which starts with a value and increment this value each time. It is of
course unique and cannot have a seed, just a start value, which is 1 if not specified.

numeric(precision, scale, null, seed)
numeric(precision, scale, null)

● precision is the number of digits;

● scale is the number of digits after the decimal point (scale <= precision);

● Cannot be unique.

Date generators

timestamp(min, max, null, seed, unique)
timestamp(min, max, null, unique)
timestamp(min, max, null)
time(min, max, null, seed, unique)
time(min, max, null, unique)
time(min, max, null)
date(min, max, null, seed, unique)
date(min, max, null, unique)
date(min, max, null)

The parameters are the same as for the number generators.

● Date: YYYY-MM-DD (ex: 1970-11-01 for the 1st of November, 1970);

● Time : hh:mm:ss (ex: 14:05:00 for 2:05 pm);

pgUnitTest P. 16 / 24 Date: August 2007

PGUNITTEST PROJECT
HELP

● Time stamp: YYYY-MM-DD hh:mm:ss.

Do not quote the parameters.

String generators

string(min, max, null, seed)
string("regex", null, seed)
string(min, max, null)
string("regex", null)

With the min and max parameters, it uses the default character set: [a-zA-Z] with the specified
length (between min and max).

The regular expression regex lets the user specify the pattern of the string to generate. They must be
between double quotes.

For example:

[a-zABCD]{5,10}

You put the list of possible characters between brackets []. Either you list the characters ABCD or
you can put a range a-z (meaning abcdefghijklmnopqrstuvwxyz).

Then you put the number of characters between accolades { }. On the left it is the minimum length of
the string, and on the right the maximum length. To have a string with a specified length you can either
put the same value for the minimum and for the maximum or just one value:

[a-z]{10} for 10 characters

The characters can be escaped with \. [ab\]] is correct since the first] is escaped.

You can create complex regular expressions: [ab]{1,5}@[cd]{1,5}.

In the last example you see that you can put a single character without a range. The expression
above is equivalent to: [ab]{1,5}[@]{1}[cd]{1,5}.

Note that you cannot escape a single character. You cannot have [ab]{1}\][ab]{1}. Instead you
must put [ab]{1}[\]][ab]{1} (or [ab]{1}[\]]{1}[ab]{1} which is equivalent, the {1} is
optional). See the \] between brackets.

Another example:

pgUnitTest P. 17 / 24 Date: August 2007

PGUNITTEST PROJECT
HELP

[a-zA-Z\-_]{10}@[a-zA-Z\-_]{8,10}.com to generate an email address.

It is impossible to generate unique strings.

Text generators

text(min, max, words, null, seed)
text(min, max, words, null)

This generator can be considered as a string(min, max, null[, seed]) with the number of
words to generate: words. Therefore the strings are composed of [a-zA-Z].

Dictionary generators

dictionary(dictionary, null, seed, unique)
dictionary(dictionary, null, unique)
dictionary(dictionary, null)

This is a special string generator: dictionary is the path to the dictionary where to pick words. So,
there must be one word per line. unique means each line will be returned once.

In case of a non-null constraint error, check that the dictionary file does not contain an empty line.

Internal generators

zip(null, seed)
zip(null)
name(null, seed, unique)
name(null, unique)
name(null)
address(null, seed)
address(null)

For:

● A zip code (a special string/regex generator);

● A name (a special dictionary generator);

● An address (a combo of dictionary, regex and number generators).

pgUnitTest P. 18 / 24 Date: August 2007

PGUNITTEST PROJECT
HELP

Reference generators

reference(table, column, null, seed, unique)
reference(table, column, null, unique)
reference(table, column, null)

They let the user pick the value in a column in a specific table. It is very useful to fill in foreign key
constraints. The values will be the ones of table.column. The table must have at least one row for
he generator to work.

Summary

short(min, max, null, seed, unique)
short(min, max, null, unique)
short(min, max, null)
integer(min, max, null, seed, unique)
integer(min, max, null, unique)
integer(min, max, null)
bigint(min, max, null, seed, unique)
bigint(min, max, null, unique)
bigint(min, max, null)
real(min, max, null, seed, unique)
real(min, max, null, unique)
real(min, max, null)
double(min, max, null, seed, unique)
double(min, max, null, unique)
double(min, max, null)
serial(start)
serial()
numeric(precision, scale, null, seed)
numeric(precision, scale, null)
timestamp(min, max, null, seed, unique)
timestamp(min, max, null, unique)
timestamp(min, max, null)
time(min, max, null, seed, unique)
time(min, max, null, unique)
time(min, max, null)
date(min, max, null, seed, unique)
date(min, max, null, unique)
date(min, max, null)
string(min, max, null, seed)
string("regex", null, seed)
string(min, max, null)
string("regex", null)

pgUnitTest P. 19 / 24 Date: August 2007

PGUNITTEST PROJECT
HELP

text(min, max, words, null, seed)
text(min, max, words, null)
dictionary(dictionary, null, seed, unique)
dictionary(dictionary, null, unique)
dictionary(dictionary, null)
zip(null, seed)
zip(null)
name(null, seed, unique)
name(null, unique)
name(null)
address(null, seed)
address(null)
reference(table, column, null, seed, unique)
reference(table, column, null, unique)
reference(table, column, null)

pgUnitTest P. 20 / 24 Date: August 2007

PGUNITTEST PROJECT
HELP

Export formats

The export format corresponds to the -f parameter on the command line. It can be one of { html,
xml, txt, db }.

When html, xml or txt is used, the path to the output file is required for the -o parameter on the
command line.

When db is used it is more complex. pgUnitTest is bundled with pgunitresults.sql which is a
file that you can import into a database. It creates the table pgunitresults.

You can export the results of unit tests to this table. For the -o parameter, instead of the file path you
put a connection string to that table -o "//host/database/user/password/table". table
should be the table created before: pgunitresults as default.

java -jar pgUnitTest.jar
-f db -o "//host/database/user/password/pgunitresults"
-s input_file.pgu -b "connection_string"

pgUnitTest P. 21 / 24 Date: August 2007

PGUNITTEST PROJECT
HELP

Command line parameters

Run pgUnitTest

pgUnitTest uses the Java Runtime Environment. It requires the JRE 1.5 (aka 5.0) but the JRE 1.6
(aka 6.0) is advised for a better output.

To run pgUnitTest, you must be in its directory and use the command line:

java -jar pgUnitTest.jar

To display the help, enter:

java -jar pgUnitTest.jar -h

Run unit tests

To run unit tests from an input script:

java -jar pgUnitTest.jar -s input.pgu -f html -o data.html -b
"//localhost:5432/database/postgres/postgres"

-f is the output format and must be one of {xml, html, txt, db}.

-o is the output file for {xml, html, txt} and is the connection string to the export table for db.

-s in the input script.

-b is the connection string to the PostgreSQL database to test: this includes the host, the database
name, the user name and the password to connect to the database.

The port in the connection string is optional.

Make a difference

You put the parameters:

● -o with the output HTML file;

pgUnitTest P. 22 / 24 Date: August 2007

PGUNITTEST PROJECT
HELP

● -d with the list of files to compare;

● That's all...

The files to compare must be pgUnitTest outputs in XML format.

For example:

java -jar pgUnitTest.jar -d input1.xml input2.xml -o out/diff.html

pgUnitTest P. 23 / 24 Date: August 2007

PGUNITTEST PROJECT
HELP

Frequently asked questions

Are the unique values really unique?

Not exactly: they cycle. If you give an integer range [1;10] and you try to generate 20 values, each
value will be generated twice. If you had given [1;20] you would not have had any problem.

It is the same thing for a dictionary: if you try to generate more values than the number of lines in the
dictionary it is normal that there will be values that are generated more than once.

I am trying to use the unique values for a real or a double and
they seem to repeat!

In this version of pgUnitTest, the values cycle every 524,288 value generated for a reasonable
range. A reasonable range is something like [1.6;1.8]. A not reasonable range is something like
[1.6;1.6000000001] where the precision of the internal number is not enough to generate the required
number of values (524,288 values).

Why is there no possibility to generate unique random strings?

Imagine the regular expression: [a-zA-Z0-9_]{10}@[a-zA-Z0-9_]{10}.com. It can be used to
generate an email address.

There are approximately 9.7x10^35 possibilities which is:

● Impossible to generate and pick randomly;

● Difficult to count as the biggest long integer is only 92233720368547758071.

However pgUnitTest is an Open Source program and any help or suggestion is really welcome.

pgUnitTest P. 24 / 24 Date: August 2007

	Overview
	Example of use
	Example database
	Create the database
	Run unit tests
	Insert the trainees
	Check some results
	More tests

	Scripting language
	Rollback option
	Test name option
	Check the result unit test
	Check the number of rows unit test
	Check the execution time unit test
	Check the results (records) unit test
	Insert unit test

	Random data generators
	How to use the generators
	Common parameters
	Number generators
	Date generators
	String generators
	Text generators
	Dictionary generators
	Internal generators
	Reference generators
	Summary

	Export formats
	Command line parameters
	Run pgUnitTest
	Run unit tests
	Make a difference

	Frequently asked questions
	Are the unique values really unique?
	I am trying to use the unique values for a real or a double and they seem to repeat!
	Why is there no possibility to generate unique random strings?

